Chilin Li Ph.D

Academic title:Professor

Phone:

E-mail: chilinli@mail.sic.ac.cn

Address:No. 585 Heshuo Road, Shanghai

Postal Code:201899

Website:-

Resume:

Name, TitleChilin Li, Professor,

Leader of GroupLight-metal based battery systems and materials

Email: chilinli@mail.sic.ac.cn

 

Education:

19992003East China University of Science and TechnologyChemical engineeringBachelors degree

20032008Fudan UniversityPhysical chemistryPhD degree

 

Professional Experience:

20082013Max-Planck-Institute for Solid State ResearchDepartment of physical chemistry of solidsResearch Scientist

From 2013Shanghai Institute of Ceramics, Chinese Academy of SciencesFull Professor,Group Leader

 

Awards and Honors :

Program of Shanghai Academic Research Leader (2021)

Young Science and Technology Award of Chinese Ceramic Society (2019)

Youth Working Committee Member of Chinese Ceramic Society (2019)

Academic Editor of the journal Interdiscip. Mater. (from 2022)

Editorial Board Member of the journal J.Inorg. Mater.(from 2018)

Editorial Board Member of the journal Batteries (from 2022)

Editorial Board Member of the journal Sci.Rep.(from 2016)

Young Editorial Board Member of the journal Battery Energy (from 2022)

 

Research:

His group is specialized in fluoride-based batteries, solid-state batteries, Li and Mg metal batteries, structure design and synthesis strategy of novel electrode and electrolyte materials, electrochemical mechanism, nanoionics.

He has published more than 130 peer-review journal papers, including Sci. Adv.Nat. Commun. (2)Sci. Bull.J. Am. Chem. Soc.Angew. Chem. (3)Adv. Mater. (2)Energy Environ. Sci. (2)Mater. TodayAdv. Energy Mater. (3)ACS Energy Lett.Adv. Funct. Mater. (12)ACS Nano (10)Energy Storage Mater. (13)Nano Energy (2)Adv. Sci.Nano Lett.npj Comput. Mater.Chem. Mater. (2)J. Mater. Chem. A (7)SmallACS Appl. Mater. Interfaces (10)Chem. Eng. J.J. Energy Chem. (2)J. Power Sources (5), and owned 1 authorized PCT international patent, 12 authorized China patents.


Representative Publications:

[112] Y. P. Gu, J. L. Hu*, C. Z. Lai, and C. L. Li*. NASICON-Based Solid State Li-Fluoride Conversion Batteries Enabled by Constructing a Fluorine-Rich Trap for Ti4+. Adv. Energy Mater. 13, 2203679, 2023.

[111] Y. F. Yu, M. Lei, D. C. Li, and C. L. Li*. Near-Room-Temperature Quasi-Solid-State F-Ion Batteries with High Conversion Reversibility Based on Layered Structured Electrolyte. Adv. Energy Mater. 13, 2203168, 2023.

[110] Y. Y. Liu, J. W. Meng, M. Lei, Y. F. Yu, C. Z. Lai, and C. L. Li*. Alloyable Viscous Fluid for Interface Welding of Garnet Electrolyte to Enable Highly Reversible Fluoride Conversion Solid State Batteries. Adv. Funct. Mater. 33, 2208013, 2023.

[109] Q. F. Yang, J. L. Hu, Z. G. Yao, J. J. Liu, and C. L. Li*. Durable Li2CN2 Solid Electrolyte Interphase Wired by Carbon Nanodomains via In Situ Interface Lithiation to Enable Long-Cycling Li Metal Batteries. Adv. Funct. Mater. 33, 2206778, 2023.

[108] C. L. Wu, J. L. Hu*, Q. F. Yang, M. Lei, Y. F. Yu, C. Z. Lai, and C. L. Li*. Open framework perovskite derivate SEI with fluorinated heterogeneous nanodomains for practical Li-metal pouch cells. Nano Energy 113, 108523, 2023.

[107] W. L. Liu, M. Lei, X. J. Zhou, and C. L. Li*. Heterojunction interlocked catalysis-conduction network in monolithic porous-pipe scaffold for endurable Li-S batteries. Energy Storage Mater. 58, 74-84, 2023.

[106] Q. P. Wu, Z. Shadike, J. Xu, F. H. Cao*, and C. L. Li*. Integrated reactor architecture of conductive network and catalytic nodes to accelerate polysulfide conversion for durable and high-loading Li-S batteries. Energy Storage Mater. 55, 73-83, 2023.

[105] C. Z. Lai, K. Y. Chen, Y. J. Zheng, J. W. Meng, J. L. Hu, and C. L. Li*. Tailored deep-eutectic solvent method to enable 3D porous iron fluoride bricks for conversion-type lithium batteries. J. Energy Chem. 78, 178-187, 2023.

[104] M. Lei, X. X.  Wu*, Y. Y. Liu, K. Y. Chen, J. L. Hu, and C. L. Li*. Polymer electrolytes reinforced by 2D fluorinated filler for all-solid-state Li-Fe-F conversion-type lithium metal batteries. Nano Res. https://doi.org/10.1007/s12274-023-5406-7, 2023.

[103] X. H. Nie, J. L. Hu and C. L. Li*. Halide-based solid electrolytes The history, progress, and challenges. Interdiscip. Mater. 2, 365-389, doi:10.1002/idm2.1209, 2023.

[102] C. Z. Lai, X. J. Zhou, M. Lei, W. L. Liu, X. K. Mu, and C. L. Li*. Scissor g-C3N4 for high-density loading of catalyst domains in mesoporous thin-layer conductive network for durable Li-S batteries. Energy Mater. 3, 300025, 2023.

[101] B. Zhang, Y. Zhang, J. L. Hu*, M. Lei, Z. Y. Shen*, and C. L. Li*. Lithiation-induced conductivity modulation in Prussian blue interlayer for stable Li/garnet solid-state batteries. Appl. Phys. Lett. 122, 033901, 2023.

[100] M. Hu, Q. F. Yang*, K. Y. Chen, and C. L. Li*. Bioderived freestanding film as a robust interfacial protective layer for advanced lithium metal anodes. Energy Technol. 2300002, https://doi.org/10.1002/ente.202300002, 2023.

[99] J. L. Hu, C. Z. Lai, K. Y. Chen, Q. P. Wu, Y. P. Gu, C. L. Wu, and C. L. Li*. Dual fluorination of polymer electrolyte and conversion-type cathode for high-capacity all-solid-state lithium metal batteries. Nat. Commun. 13, 7914, 2022.

[98] Y. Y. Liu, M. Lei, C. Z. Lai, J. W. Meng, X. X. Wu, Y. F. Yu, Y. Zhang, and C. L. Li*. Enable high reversibility of Fe/Cu based fluoride conversion batteries via interfacial gas release and detergency of garnet electrolytes. Mater. Today 61, 65-77, 2022.

[97] Y. J. Zheng, Z. G. Yao, Z. Shadike, M. Lei, J. J. Liu, and C. L. Li*. Defect-concentration-mediated T-Nb2O5 anodes for durable and fast-charging Li-ion batteries. Adv. Funct. Mater., 32, 2107060, 2022.

[96] Y. J. Zheng, W. J. Qiu, L. Wang, J. J. Liu, S. Q. Chen*, and C. L. Li*. Triple conductive wiring by electron doping, chelation coating and electrochemical conversion in fluffy Nb2O5 anodes for fast-charging Li-ion batteries. Adv. Sci., 9, 2202201, 2022.

[95] T. Wu, Y. H. Cui*, K. Y. Wei, C. Z. Lai, Y. Zhao, S. Ni, Y. J. Chen, X. Gao, Y. X. Cui, and C. L. Li*. Catalysis of nickel nanodomains on Li-F dissociation for high-capacity fluoride cathodes with prior delithiation ability. Nano Energy 103, 107843, 2022.

[94] Q. F. Yang, Z. G. Yao, C. Z. Lai, and C. L. Li*. Pre-pulverizing Ni-Rich Layered Oxide Cathodes via “Liquid Explosive” Infiltration toward Highly Endurable 4.5 V Lithium Batteries. Energy Storage Mater., 50, 819-828, 2022.

[93] M. Lei, S. S. Fan, Y. F. Yu, J. L. Hu, K. Y. Chen, Y. P. Gu, C. L. Wu, Y. Zhang, and C. L. Li*. NASICON-based solid state Li-Fe-F conversion batteries enabled by multi-interface-compatible sericin protein buffer layer. Energy Storage Mater., 47, 551-560, 2022.

[92] Y. J. Li, X. J. Zhou, J. L. Hu, Y. J. Zheng, M. S. Huang, K. Guo, and C. L. Li*. Reversible Mg metal anode in conventional electrolyte enabled by durable heterogeneous SEI with low surface diffusion barrier. Energy Storage Mater., 46, 1-9, 2022.

[91] R. R. Li, J. He, M. Lei, M. H. Yang*, and C. L. Li*. High-density catalytic heterostructures strung by buried-in carbon tube network as monolithic holey host for endurable Li-S batteries. Chem. Eng. J., 446, 137294, 2022.

[90] Y. J. Li, Y. J. Zheng, K. Guo, J. T. Zhao, and C. L. Li*. Mg-Li Hybrid Batteries: the Combination of Fast Kinetics and Reduced Overpotential. Energy Mater. Adv., Article ID 9840837, doi.org/10.34133/2022/9840837, 2022.

[89] W. B. Li, M. S. Huang, Y. M. Li*, and C. L. Li*. CoS2 as Cathode Material for Magnesium Batteries with Dual-salt Electrolytes (in Chinese). J. Inorg. Mater., 37, 173-181, 2022.

[88] K. Y. Chen, M. Lei, Z. G. Yao, Y. J. Zheng, J. L. Hu, C. Z. Lai, and C. L. Li*. Construction of solid-liquid fluorine transport channel to enable highly reversible conversion cathodes. Sci. Adv., 7, eabj1491, 2021.

[87] J. L. Hu, K. Y. Chen, Z. G. Yao, and C. L. Li*. Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte. Science Bulletin, 66, 694-707, 2021.

[86] J. W. Meng, M. Lei, C. Z. Lai, Q. P. Wu, Y. Y. Liu, and C. L. Li*. Lithium Ion Repulsion-Enrichment Synergism Induced by Core–Shell Ionic Complexes to Enable High-Loading Lithium Metal Batteries. Angew. Chem. Int. Ed., 60, 23256-23266, 2021.

[85] M. S. Huang, Z. G. Yao, Q. F. Yang, and C. L. Li*. Consecutive Nucleation and Confinement Modulation towards Li Plating in Seeded Capsules for Durable Li-Metal Batteries. Angew. Chem. Int. Ed., 60, 14040-14050, 2021.

[84] Q. F. Yang, J. L. Hu, J. W. Meng, and C. L. Li*. C-F-rich oil drop as non-expendable fluid interface modifier with low surface energy to stabilize Li metal anode. Energy Environ. Sci., 14, 3621-3631, 2021.

[83] Q. P. Wu, Y. J. Zheng, X. Guan, J. Xu, F. H. Cao*, and C. L. Li*, Dynamical SEI Reiforced by Open-Archiecture MOF Film with Stereoscopic Lithiophilic Sites for High-Performance Lithium-Metal Batteries. Adv. Funct. Mater, 31, 2101034, 2021.

[82] K. Y. Wei, Y. Zhao, K. Y. Chen, K. Sun, T. Wu, Z. H. Dong, Y. H. Cui*, C. Zeng, and C. L. Li*, Low-Overpotential LiF Splitting in Lithiated Fluoride Conversion Cathode Catalyzed by Spinel Oxide. Adv. Funct. Mater., 31, 2009133, 2021.

[81] J. W. Meng, and C. L. Li*, Planting CuGa2 Seeds Assisted with Liquid Metal for Selective Wrapping Deposition of Lithium. Energy Storage Mater. 37, 466-475, 2021.

[80] X. X. Wu, Y. J. Zheng, W. B. Li, Y. Y. Liu, Y. Zhang, Y. J. Li, and C. L. Li*, Solid Electrolytes Reinforced by Infinite Coordination Polymer Nano-Network for Dendrite-free Lithium Metal Batteries. Energy Storage Mater., 41, 436-447, 2021.

[79] Z. G. Yao, Y. F. Yu, Q. P. Wu, M. N. Cui, X. J. Zhou, J. J. Liu*, and C. L. Li*, Maximizing Magnesiation Capacity of Nanowire Cluster Oxides by Conductive Macromolecule Pillaring and Multication Interacalation. Small, 17, 2102168, 2021.

[78] K. Y. Chen, W. J. Qiu, Q. P. Wu, X. J. Zhou, J. J. Liu, and C. L. Li*, Tight bonding and high-efficiency utilization of S-S moieties to enable ultra-stable and high-capacity alkali-metal conversion batteries. J. Mater. Chem. A, 9, 6160-6171, 2021.

[77] Q. P. Wu, Z. G. Yao, A. C. Du, H. Wu, M. S. Huang, J. Xu, F. H. Cao*, and C. L. Li*, Oxygen-defect-rich coating with nanoporous texture as both anode host and artificial SEI for dendrite-mitigated lithium-metal batteries. J. Mater. Chem. A, 9, 5606-5618, 2021.

[76] X. X. Wu, K. Y. Chen, Z. G. Yao, J. L. Hu, M. S. Huang, J. W. Meng, S. P. Ma, T. Wu, Y. H. Cui, and C. L. Li*, Metal Organic Framework Reinforced Polymer Electrolyte with High Cation Transference Number to Enable Dendrite-Free Solid State Li Metal Conversion Batteries. J. Power Sources, 501, 229946, 2021.

[75] K. X. Huang, Z. G. Yao, K. Sun, K. Y. Chen, J. L. Hu, D. G. Yin*, and C. L. Li*. Electrolyte formulation to enable ultra-stable aqueous Zn-organic batteries. J. Power Sources, 482, 228904, 2021.

[74] Y. J. Li, K. Guo*, J. T. Zhao, and C. L. Li*. Progresses on anode interface modification of lithium metal batteries: Benefiting from functional additives and conformal coatings (in Chinese). Chin. Sci. Bull., 66, 2971-2990, 2021.

[73] J. W. Meng, Y. Zhang, X. J. Zhou, M. Lei, and C. L. Li*. Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting. Nat. Commun., 11, 3716, 2020.

[72] R. R. Li, H. J. Peng, Q. P. Wu, X. J. Zhou, J. He, H. J. Shen, M. H. Yang,* and C. L. Li*. Sandwich-like catalyst-carbon-catalyst trilayer structure as compact 2D host for highly stable lithium-sulfur batteries. Angew. Chem. Int. Ed., 59, 12129-12138, 2020.

[71] Z. G. Yao, Q. P. Wu, K. Y. Chen, J. J. Liu*, and C. L. Li*. Shallow-Layer Pillaring of Conductive Polymer in Monolithic Grains to Drive Superior Zinc Storage via Cascading Effect. Energy Environ. Sci., 13, 3149-3163, 2020.

[70] Y. Zhang, J. W. Meng, K. Y. Chen, H. Wu, J. L. Hu, and C. L. Li*. Garnet based solid-state Li-fluoride conversion batteries benefiting from eutectic interlayer of superior wettability. ACS Energy Lett., 5, 1167-1176, 2020.

[69] Q. F. Yang, M. N. Cui, J. L. Hu, F. L. Chu, Y. J. Zheng, J. J. Liu, and C. L. Li*. Ultrathin Defective C-N Coating to Enable Nanostructured Li Plating for Li Metal Batteries. ACS Nano, 14, 1866-1878, 2020.

[68] Q. P. Wu, Z. G. Yao, X. J. Zhou, J. Xu,* F. H. Cao, and C. L. Li*. Built-In Catalysis in Confined Nanoreactors for High-Loading Li-S Batteries. ACS Nano, 14, 3365-3377, 2020.

[67] J. L. Hu, Z. G. Yao, K. Y. Chen, and C. L. Li*. High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries. Energy Storage Mater., 28, 37-46, 2020.

[66] S. S. Fan, M. Lei, H. Wu, J. L. Hu, C. L. Yin, T. X. Liang*, and C. L. Li*. A Na-rich fluorinated sulfate anti-perovskite with dual doping as solid electrolyte for Na metal solid state batteries. Energy Storage Mater., 31, 87-94, 2020.

[65] X. J. Zhou, J. Tian, Q. P. Wu, J. L. Hu, and C. L. Li*. N/O dual-doped hollow carbon microspheres constructed by holey nanosheet shells as large-grain cathode host for high loading Li-S batteries. Energy Storage Mater., 24, 644-654, 2020.

[64] Y. Zhang, J. W. Meng, K. Y. Chen, Q. P. Wu, X. X. Wu, and C. L. Li*. Behind the Candelabra: A Facile Flame Vapor Deposition Method for Interfacial Engineering of Garnet Electrolyte To Enable Ultralong Cycling Solid-State Li-FeF3 Conversion Batteries. ACS Appl. Mater. Interfaces, 12, 33729-33739, 2020.

[63] M. S. Huang, Z. G. Yao, Q. P. Wu, Y. J. Zheng, J. J. Liu, and C. L. Li*. Robustness-Heterogeneity-Induced Ultrathin 2D Structure in Li Plating for Highly Reversible Li–Metal Batteries. ACS Appl. Mater. Interfaces, 12, 46132-46145, 2020.

[62] X. W. Zhang, Q. P. Wu, X. Guan, F. H. Cao, C. L. Li*, and J. Xu*. Lithium dendrite-free and fast-charging for high voltage nickel-rich lithium metal batteries enabled by bifunctional sulfone-containing electrolyte additives. J. Power Sources, 452, 22783, 2020.

[61] W. L. Liu, K. X. Huang, X. J. Zhou, and C. L. Li*. Kinetics Activated Magnesium Metal Batteries Based on Conversion Reaction (in Chinese). J Chin. Ceram. Soc., 48, 978-989, 2020.

[60] Y. F. Yu, Y. P. Gu, and C. L. Li*. Progress on fluoride ion shuttle batteries (in Chinese). Energy Storage Science and Technology, 9, 217-238, 2020.

[59] J. W. Meng, F. L. Chu, J. L. Hu, and C. L. Li*. Liquid Polydimethylsiloxane Grafting to Enable DendriteFree Li Plating for Highly Reversible LiMetal Batteries. Adv. Funct. Mater., 29, 1902220, 2019.

[58] Q. P. Wu, X. J. Zhou, J. Xu*, F. H. Cao, and C. L. Li*. Adenine derivative host with interlaced 2D structure and dual lithiophilic-sulfiphilic sites to enable high-loading Li-S batteries. ACS Nano, 13, 9520-9532, 2019.

[57] R. R. Li, X. J. Zhou, H. J. Shen, M. H. Yang*, and C. L. Li*. Conductive Holey MoO2-Mo3N2 Heterojunctions as Job-Synergistic Cathode Host with Low Surface Area for High Loading Li-S Batteries. ACS Nano, 13, 10049-10061, 2019.

[56] Yu Zhao, K. Y. Wei, H. L. Wu, S. P. Ma, J. Li, Y. X. Cui, Z. H. Dong, Y. H. Cui*, and C. L. Li*. LiF Splitting Catalyzed by Dual Metal Nanodomains for an Efficient Fluoride Conversion Cathode. ACS Nano, 13, 2490-2500, 2019.

[55] J. Tian, X. J. Zhou, Q. P. Wu, and C. L. Li*. Li-salt mediated Mg-rhodizonate batteries based on ultra-large cathode grains enabled by K-ion pillaring. Energy Storage Mater., 22, 218-227, 2019.

[54] H. Wu, Z. G. Yao, Q. P. Wu, S. S. Fan, C. L. Yin*, and C. L. Li*. Confinement effect and air tolerance of Li plating by lithiophilic poly(vinyl alcohol) coating for dendrite-free Li metal batteries. J. Mater. Chem. A, 7, 22257-22264, 2019.

[53] W. J. Qiu, Z. S. Li, K. Y. Chen, C. L. Li*, J. J. Liu*, and W. Q. Zhang. Stabilizing Low-coordinated O-ions to Operate Cationic and Anionic Redox Chemistry of Li-ion Battery Materials. ACS Appl. Mater. Interfaces, 11, 37768-37778, 2019.

[52] C. L. Wu, J. L. Hu, Z. G. Yao, D. G. Yin*, and C. L. Li*. Highly Reversible Conversion Anodes Composed of Ultra-Large Monolithic Grains with Seamless Intragranular Binder and Wiring Network. ACS Appl. Mater. Interfaces, 11, 23280-23290, 2019.

[51] C. L. Wu, J. L. Hu, J. Tian, F. L. Chu, Z. G. Yao, Y. J. Zheng, D. G. Yin*, and C. L. Li*. Stacking of Tailored Chalcogenide Nanosheets around MoO2-C Conductive Stakes Modulated by Hybrid POMìMOF Precursor Template: Composite Conversion-Insertion Cathodes for Rechargeable Mg-Li Dual-Salt Batteries. ACS Appl. Mater. Interfaces, 11, 5966-5977, 2019.

[50] F. L. Chu, J. L. Hu, C. L. Wu, Z. G. Yao, J. Tian, Z. Li*, and C. L. Li*. Metal-Organic Frameworks as Electrolyte Additives to Enable Ultrastable PlatingStripping of Li Anode with Dendrite Inhibition. ACS Appl. Mater. Interfaces, 11, 3869-3879, 2019.

[49] T. C. Liu, J. L. Hu, C. L. Li*, and Y. Wang*. Unusual Conformal Li Plating on Alloyable Nanofiber Frameworks to Enable Dendrite Suppression of Li Metal Anode. ACS Appl. Energy Mater., 2, 4379-4388, 2019.

[48] H. Wu, Q. P. Wu, F. L. Chu, J. L. Hu, Y. H. Cui*, C. L. Yin*, and C. L. Li*. Sericin protein as a conformal protective layer to enable air-endurable Li metal anodes and high-rate Li-S batteries. J. Power Sources, 419, 72-81, 2019.

[47] H. L. Wu, J. L. Wang, Y. Zhao, X. Q. Zhang, L. Xu, H. Liu, Y. X. Cui, Y. H. Cui*, and C. L. Li*. Branched cellulose reinforced composite polymer electrolyte with upgraded ionic conductivity for anode stabilized solid-state Li metal batteries. Sustainable Energy Fuels, 3, 2642-2656, 2019.

[46] Q. P. Wu, X. J. Zhou, J. Xu, F. H. Cao*, and C. L. Li*. Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li-S batteries. J. Energy Chem., 38, 94-113, 2019.

[45] X. J. Zhou, J. Tian, J. L. Hu, and C. L. Li*. High Rate Magnesium-Sulfur Battery with Improved Cyclability Based on Metal-Organic Framework Derivative Carbon Host. Adv. Mater., 30, 1704166, 2018.

[44] K. Y. Chen, Y. Zhang, and C. L. Li*. High-Rate Nanostructured Pyrite Cathodes Enabled by Fluorinated Surface and Compact Grain Stacking via Sulfuration of Ionic Liquid Coated Fluorides. ACS Nano, 12, 12444-12455, 2018.

[43] J. Tian, D. P. Cao, X. J. Zhou, J. L. Hu, M. S. Huang, and C. L. Li*, High-Capacity Mg–Organic Batteries Based on Nanostructured Rhodizonate Salts Activated by Mg-Li Dual-Salt Electrolyte. ACS Nano, 12, 3424-3435, 2018.

[42] Q. F. Yang, and C. L. Li*. Li metal batteries and solid state batteries benefiting from halogen-based strategies. Energy Storage Mater., 14, 100-117, 2018.

[41] D. P. Cao, Z. G. Yao, J. J. Liu, J. C. Zhang*, and C. L. Li*. H-Nb2O5 Wired by Tetragonal Tungsten Bronze Related Domains as High-Rate Anode for Li-ion Batteries. Energy Storage Mater., 11, 152-160, 2018.

[40] C. L. Li*, K. Y. Chen, X. J. Zhou, and J. Maier. Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices. npj Comput. Mater., 4, 22, doi:10.1038/s41524-018-0079-6, 2018.

[39] J. L. Hu, K. Y. Chen, and C. L. Li*. Nanostructured Li-rich Fluoride Coated by Ionic Liquid as High Ion-conductivity Solid Electrolyte Additive to Suppress Dendrite Growth at Li Metal Anode. ACS Appl. Mater. Interfaces, 10, 34322-34331, 2018.

[38] F. L. Chu, J. L. Hu, J. Tian, X. J. Zhou, Z. Li*, and C. L. Li*. In-Situ Plating of Porous Mg Network Layer to Reinforce Anode Dendrite Suppression in Li-Metal Batteries. ACS Appl. Mater. Interfaces, 10, 12678-12689, 2018.

[37] P. Y. Wang, J. Tian, J. L. Hu, X. J. Zhou, and C. L. Li*. Supernormal Conversion Anode Consisting of High-Density MoS2 Bubbles Wrapped in Carbon Thin-Layer Network by Self-Sulfuration of Polyoxometalate-Based Complex. ACS Nano, 11, 7390-7400, 2017.

[36] D. P. Cao, C. L. Yin, D. R. Shi, Z. W. Fu, J. C. Zhang*, and C. L. Li*. Cubic Perovskite Fluoride as Open Framework Cathode for Na-Ion Batteries. Adv. Funct. Mater., 27, 1701130, 2017.

[35] J. L. Hu, J. Tian, and C. L. Li*. Nanostructured Carbon Nitride Polymer Reinforced Electrolyte to Enable Dendrite-Suppressed Li Metal Batteries. ACS Appl. Mater. Interfaces, 9, 11615-11625, 2017.

[34] D. P. Cao, C. L. Yin, J. C. Zhang*, and C. L. Li*. Bronze and pyrochlore type iron fluorides as cathode materials for Li/Na batteries (in Chinese). Chin. Sci. Bull., 62, 897-907, 2017.

[33] J. J. Xie, Y. Zhang, Y. L. Han, and C. L. Li*. High-Capacity Molecular Scale Conversion Anode Enabled by Hybridizing Cluster-Type Framework of High Loading with Amino-Functionalized Graphene. ACS Nano, 10, 5304-5313, 2016.

[32] Y. L. Han, M. H. Yang, Y. Zhang, J. J. Xie, D. G. Yin*, and C. L. Li*.Tetragonal Tungsten Bronze Framework as Potential Anode for Na-Ion Batteries. Chem. Mater., 28, 3139-3147, 2016.

[31] Y. L. Han, J. L. Hu, C. L. Yin, Y. Zhang, J. J. Xie, D. G. Yin, and C. L. Li*. Iron-Based Fluorides of Tetragonal Tungsten Bronze Structure as Potential Cathodes for Na-Ion Batteries. J. Mater. Chem. A, 4, 7382-7389, 2016.

[30] J. L. Hu, Y. Zhang, D. P. Cao, and C. L. Li*. Dehydrating Bronze Iron Fluoride as High Capacity Conversion Cathode for Lithium Batteries. J. Mater. Chem. A, 4, 16166-16174, 2016.

[29] P. L. Lou, C. L. Li*, Z. H. Cui, and X. X. Guo*. Job-Sharing Cathode Design for Li-O2 Batteries with High Energy Efficiency Enabled by In-Situ Ionic Liquid Bonding to Cover Carbon Surface Defects. J. Mater. Chem. A, 4, 241-249, 2016.

[28] Y. Zhang, J. J. Xie, Y. L. Han, and C. L. Li*. Dual-Salt Mg-Based Batteries with Conversion Cathodes. Adv. Funct. Mater., 25, 7300-7308, 2015.

[27] J. J. Xie, C. L. Li*, Z. H. Cui, and X. X. Guo. Transition-Metal-Free Magnesium-Based Batteries Activated by Anionic Insertion into Fluorinated Graphene Nanosheets. Adv. Funct. Mater., 25, 6519-6526, 2015.

[26] Z. H. Cui#, C. L. Li#,*, P. F. Yu, M. H. Yang*, X. X. Guo*, and C. L. Yin. Reaction Pathway and Wiring Network Dependent Li/Na Storage of Micro-Sized Conversion Anode with Mesoporosity and Metallic Conductivity. J. Mater. Chem. A, 3, 509-514, 2015.

[25] F. Qu, C. L. Li*, Z. M. Wang*, Y. R. Wen, G. Richter, and H. P. Strunk. Eutectic Nano-Droplet Template Injection into Bulk Silicon to Construct Porous Frameworks with Concomitant Conformal Coating as Anodes for Li-Ion Batteries. Sci. Rep., 5, 10381, 2015.

[24] F. Qu, C. L. Li*, Z. M. Wang, H. P. Strunk, and J. Maier. Metal-Induced Crystallization of Highly Corrugated Silicon Thick Films as Potential Anodes for Li-Ion Batteries. ACS Appl. Mater. Interfaces, 6, 8782-8788, 2014.

[23] P. F. Yu, C. L. Li*, and X. X. Guo*. Sodium Storage and Pseudocapacitive Charge in Textured Li4Ti5O12 Thin Films. J. Phys. Chem. C, 118, 10616-10624, 2014.

[22] N. Zhao, C. L. Li*, and X. X. Guo*.Long-Life Na-O2 Batteries with High Energy Efficiency Enabled by Electrochemically Splitting NaO2 at Low Overpotential. Phys. Chem. Chem. Phys.,16, 15646-15652, 2014.

[21] Y. Q. Li, Z. Wang, C. L. Li*, Y. Cao, and X. X. Guo*. Densification and Ionic-Conduction Improvement of Lithium Garnet Solid Electrolytes by Flowing Oxygen Sintering. J. Power Sources, 248, 642-646, 2014.

[20] C. L. Li*, C. L. Yin, L. Gu, R. E. Dinnebier, X. K. Mu, P. A. van Aken, and J. Maier. A FeF3·0.5H2O Polytype: Microporous Framework Compound with Intersecting Tunnels for Li and Na Batteries. J. Am. Chem. Soc., 135, 11425-11428, 2013.

[19] C. L. Li*, X. K. Mu, P. A. van Aken, and J. Maier. A Large-Capacity Cathode for Lithium Batteries Consisting of Porous Microspheres of Highly Amorphized Iron Fluoride Densified from Its Open Parent Phase. Adv. Energy Mater., 3, 113-119, 2013.

[18] C. L. Li*, C. L. Yin, X. K. Mu, and J. Maier. Top-Down Synthesis of Open Framework Fluoride for Lithium and Sodium Batteries. Chem. Mater., 25, 962-969, 2013.

[17] C. L. Li*, L. Gu, X. X. Guo, D. Samuelis, K. Tang, and J. Maier*. Charge Carrier Accumulation in Lithium Fluoride Thin Films Due to Li-Ion Absorption by Titania (100) Subsurface. Nano Lett., 12, 1241-1246, 2012.

[16] C. L. Li*, L. Gu, and J. Maier. Enhancement of Li Conductivity in LiF by Introducing Glass-Crystal Interfaces. Adv. Funct. Mater., 22, 1145-1149, 2012.

[15] C. L. Li*, and J. Maier. Ionic space charge effects in lithium fluoride thin films. Solid State Ionics, 225, 408-411, 2012.

[14] C. L. Li*, L. Gu, J. W. Tong, and J. Maier*. Carbon Nanotube Wiring of Electrodes for High-Rate Lithium Batteries Using an Imidazolium-Based Ionic Liquid Precursor as Dispersant and Binder: A Case Study on Iron Fluoride Nanoparticles. ACS Nano, 5, 2930-2938, 2011.

[13] C. L. Li*, L. Gu*, J. W. Tong, S. Tsukimoto, and J. Maier. A Mesoporous Iron-Based Fluoride Cathode of Tunnel Structure for Rechargeable Lithium Batteries. Adv. Funct. Mater., 21, 1391-1397, 2011.

[12] C. L. Li*, X. X. Guo, L. Gu, D. Samuelis, and J. Maier*. Ionic Space-Charge Depletion in Lithium Fluoride Thin Films on Sapphire (0001) Substrates. Adv. Funct. Mater., 21, 2901-2905, 2011.

[11] C. L. Li*, L. Gu*, S. Tsukimoto, P. A. van Aken, and J. Maier. Low Temperature Synthesis of Nanostructured Iron-Based Fluoride Cathode by Ionic Liquid for Lithium Batteries. Adv. Mater., 22, 3650-3654, 2010.

[10] C. L. Li, K. Sun, L. Yu, and Z. W. Fu*. Electrochemical Reaction of Lithium with Orthorhombic Bismuth Tungstate Thin Films Fabricated by Radio-Frequency Sputtering. Electrochim. Acta, 55, 6-12, 2009.

[9] C. L. Li, Q. Sun, G. Y. Jiang, and Z. W. Fu*. Electrochemistry and Morphology Evolution of Carbon Micro-Net Films for Rechargeable Lithium Ion Batteries. J. Phys. Chem. C, 112, 13782-13788, 2008.

[8] C. L. Li and Z. W. Fu*. Nano-sized Copper Tungstate Thin Films as Positive Electrodes for Rechargeable Li Batteries. Electrochim. Acta, 53, 4293-4301, 2008.

[7] C. L. Li and Z. W. Fu*. Electrochemical Characterization of Amorphous LiFe(WO4)2 Thin Films as Positive Electrodes for Rechargeable Lithium Batteries. Electrochim. Acta, 53, 6434-6443, 2008.

[6] C. L. Li and Z. W. Fu*. All-Solid-State Rechargeable Thin Film Lithium Batteries with LixMn2O4 and LixMn2O4-0.5ZrO2 Cathodes. Electrochim. Acta, 52, 6155-6164, 2007.

[5] C. L. Li and Z. W. Fu*. Kinetics of Li+ Ion Diffusion into FePO4 and FePON Thin Films Characterized by AC Impedance Spectroscopy. J. Electrochem. Soc., 154 (8), A784-A791, 2007.

[4] C. L. Li, B. Zhang, and Z. W. Fu*. Physical and Electrochemical Characterization of Thin Films of Iron Phosphate and Nitrided Iron Phosphate for All-Solid-State Batteries. J. Electrochem. Soc., 153 (9), E160-E165, 2006.

[3] C. L. Li, B. Zhang, and Z. W. Fu*. Physical and Electrochemical Characterization of Amorphous Lithium Lanthanum Titanate Solid Electrolyte Thin-Film Fabricated by E-Beam Evaporation. Thin Solid Films, 515, 1886-1892, 2006.

[2] C. L. Li, W. Y. Liu, and Z. W. Fu*. Physical and Electrochemical Characterization of LiCo0.8M0.2O2 (M= Ni, Zr) Cathode Films for All-Solid-State Rechargeable Thin-film Lithium Batteries. Chinese Journal of Chemical Physics, 19 (6), 493-498, 2006.

[1] 李驰麟,傅正文*,舒兴胜,任兆杏.电子回旋共振等离子体辅助溅射沉积锂磷氧氮薄膜. 无机材料学报, 21(1), 193-198, 2006