About Us Research People International Cooperation News Education Papers Resources Links Societies & Publications Company
Picture News
Join Us
Location:Home>SICCAS News>Seminar

Probe-based technique: A pathway to control multiple ferroic orders at nanoscale

Update time:
Text Size: A A A


  The State Key Lab of 

  High Performance Ceramics and Superfine Microstructure 

  Shanghai Institute of Ceramics, Chinese Academy of Sciences 

  中 国 科 学 院 上 海 硅 酸 盐 研 究 所 高 性 能 陶 瓷 和 超 微 结 构 国 家 重 点 实 验 室 

  Probe-based technique: A pathway to control multiple ferroic orders at nanoscale 

  张金星 教授 

  北京师范大学 物理系 

  时间:2015年7月9日(星期四)上午 10:00 





  Due to the upcoming demands of the next-generation electronic devices with low energy consumption and high storage density, emerging correlated materials (such as superconductors, topological insulators, magnetoelectric multiferroics etc.) are highly desired. Recently, especially for the last decades, multiferroics attract people’s interests due to their relatively high transition temperature and being chemically robust at ambient atmosphere. These give people a strong push to explore strong coupling between multiferroic orders (magnetism, ferroelectricity and ferroelasticity) at room temperature. A great challenge would be how to achieve the nanoscale control of the above multiple ferroic orders with low energy consumption.

  In this talk, I will introduce a brand-new strategy to deterministically switch the multiferroic orders using a nanoscale probe-based technique. I will show how to control the local spin structure, elastic modulus and photo-electric behavior in multiferroic structures such as hetero-interface, domain walls and/or phase boundaries. Taking advantage of those multiferroic model systems, we are able to have opportunities to better understand and control the emerging coupling of orders parameters across the nanoscale tip/oxide interfaces. These reversible controls of the electric, magnetic and elastic orders using a probe-based technique also demonstrate possible applications in future electronic and magnetoelectronic devices.

  Recent selected publications 

  1. Y. J. Li, J. J. Wang, J. C. Ye, X. Ke, G. Y. Gou, Y. Wei, F. Xue, J. Wang, C. S. Wang, R. Peng, X.L Deng, Y. Yang, X. Ren, L-Q. Chen, C-W. Nan and Jinxing Zhang*, "Mechanical Switching of Nanoscale Multiferroic Phase Boundaries",Advanced Functional Materials, DOI: 10.1002/adfm.201500600 (2015).

  2. J. Wang, L. S. Xie, C. S. Wang, H. Z. Zhang, L. Shu, J. Bai, Y. S. Chai, X. Zhao, J. C. Nie, C. B. Cao, C. Z. Gu, C. M. Xiong, Y. Sun, J. Shi, S. Salahuddin, K. Xia, C. W. Nan and Jinxing Zhang*, “Magnetic Domain-wall Motion Twisted by Nanoscale Probe-induced Spin Transfer”, Physical Review B, 90, 224407 (2014).

  3. Jinxing Zhang*, Xiaoxing Ke*, Gaoyang Gou, Jan Seidel, Bin Xiang, Pu Yu, Wen-I. Liang, Andrew M. Minor, Ying-Hao Chu, Gustaaf Van Tendeloo, Xiaobing Ren, Ramamoorthy Ramesh, “A Nanoscale Shape Memory Oxide”, Nature Communications 4, 2768 (2013).

  4. Jinxing Zhang*, B. Xiang, Q. He, J. Seidel, R.J. Robert, P. Yu, S.Y. Yang, C.H. Wang, Y.-H. Chu, L.W. Martin, A.M. Minor, and R. Ramesh,“Large Field-induced Strains in a Lead-free Piezoelectric Material”, Nature Nanotechnology, 6, 98 (2011).

  5. Jinxing Zhang*, Q. He, M. Trassin, W. Luo, D. Yi, M. D. Rossell, P. Yu, L. You, C. H. Wang, C. Y. Kuo, J. T. Heron, Z. Hu, R. J. Zeches, H. J. Lin, A. Tanaka, C. T. Chen, L. H. Tjeng, Y.-H. Chu, R. Ramesh,“Microscopic Origin of Giant Ferroelectric Polarization in Tetragonal-like BiFeO3”, Physical Review Letters, 107, 147602 (2011).